SHILEYTM TRACHEOSTOMY

THE SCIENCE OF SEALING

Medtronic Further, Together

EXPECTED TRACHEAL DIAMETER LITERATURE SEARCH

According to Breatnach article "Dimensions of the normal human trachea"

- Typical Male trachea size is 20.9mm
- Typical Female trachea size is 16.9mm

**Current Shiley trach tube cuffs (barrel shaped) are 40% larger than the expected adult trachea

Breatnach, E, et al. "Dimensions of the Normal Human Trachea." American Journal of Roentgenology, vol. 142, no. 5, 1984, pp. 903–906., doi:10.2214/ajr.142.5.903.

Brodsky JB, Macario A, Mark JB. Tracheal diameter predicts double-lumen tube size: a method for selecting left double-lumen tubes. Anesthesia And Analgesia. 1996;82(4):861-864.

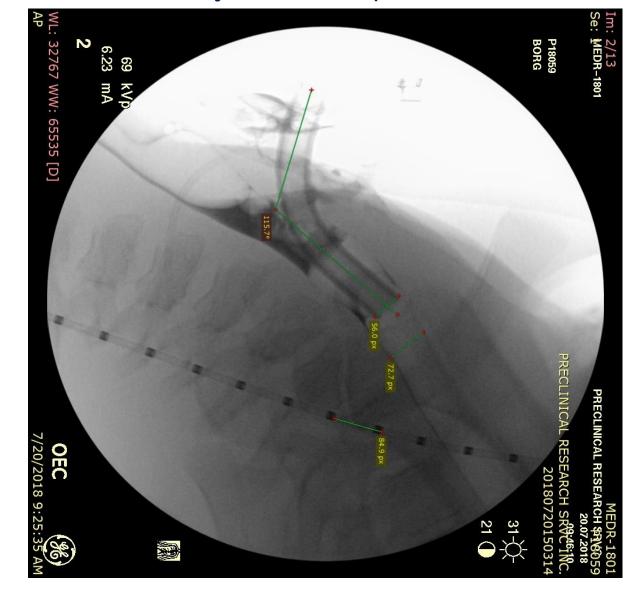
http://libcontent.medtronic.com/secure/?url=http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=8615510&site=eds-live.

SPECIFICATION SHILEYTM PRODUCT COMPARISON

Shiley Flex Product	CRD	Legacy DCT Product	CRD	Shiley™ ETT TaperGuard™ Cuff	CR
4CN65X	20.6 mm	4DCT	20.0 mm	18765	20
5CN70X	23.0 mm			18770	25
6CN75X	25.4 mm	6DCT	24.0 mm	18775	25
7CN80X	25.4 mm			18780	25
8CN85X	26.6 mm	8DCT	27.0 mm	18785	28
9CN90X	27.6 mm			18790	28
10CN10X	28.6 mm	10DCT	29.0 mm	18710	28


RD

- 0.6 mm
- 5.4 mm
- 5.4 mm
- 5.4 mm
- 8.6 mm
- 8.6 mm
- 8.6 mm

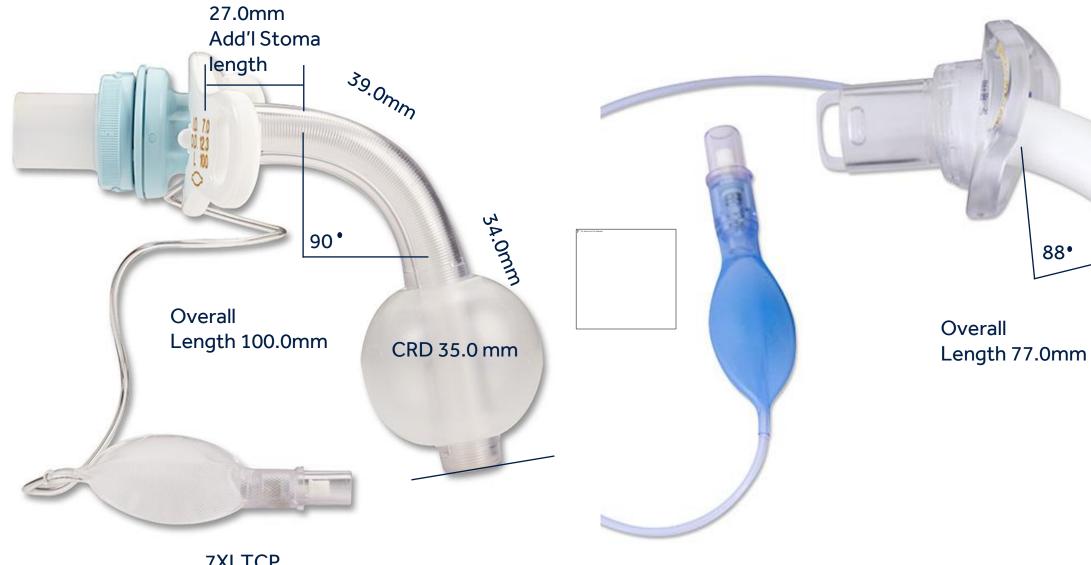

SHILEY FLEXIBLE COMPARED TO SHILEY XLT

Shiley Flex Product	CRD	XLT Product	CRD
4CN65X	20.6 mm		
5CN70X	23.0 mm	60XLTXX	31.3 mm
6CN75X	25.4 mm		
7CN80X	25.4 mm	70XLTXX	35.0 mm
8CN85X	26.6 mm		
9CN90X	27.6 mm	80XLTXX	35.0 mm
10CN10X	28.6 mm		

IMPORTANCE OF CHOOSING THE RIGHT PRODUCT

Shiley[™] DCT Legacy cuff

■ Images were produced during animal trial comparing Shiley[™] DCT to Shiley[™] flexible tracheostomy tubes


Shiley[™] flexible TaperGuard[™] cuff

WHEN TO CHOOSE XLT

6

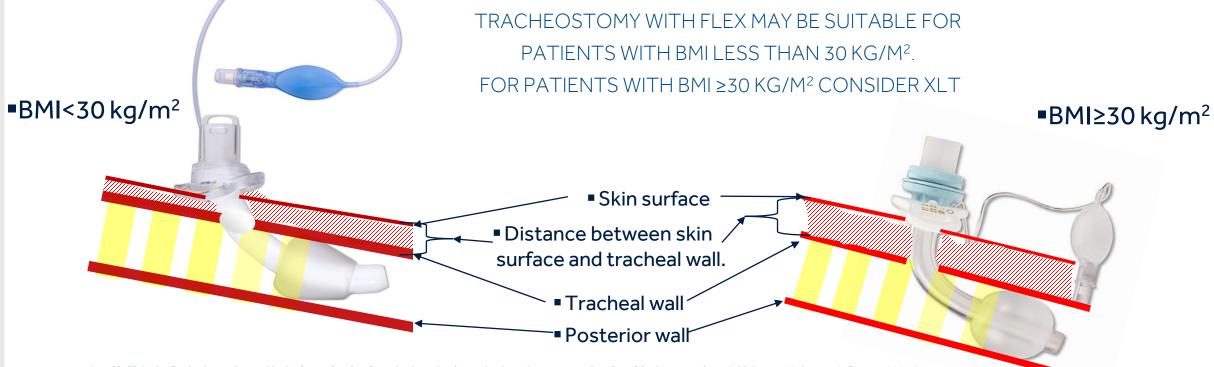
Medtronic Further, Together

SHILEY FLEX OR XLT PROXIMAL PRODUCT COMPARISON W/ IC

7XLTCP I.D. 7.0mm O.D. 12.3mm

Medtronic

7CN80X I.D. 7.0mm O.D. 11.4mm


CRD 25.4 mm

FLEX OR XLT

STOMAL DEPTH DEPENDS ON SEVERAL FACTORS¹:

THE SITE OF THE TRACHEOSTOMY (IF PERFORMED BELOW THE SECOND OR THIRD TRACHEAL RING THE STOMAL LENGTH WILL BE GREATER THAN IF PERFORMED BELOW THE FIRST TRACHEAL RING ANGLE OF THE STOMA IN RELATION TO THE TRACHEA (LESS ACUTE ANGLES WILL LEAD TO A GREATER STOMAL LENGTH)

BODY SIZE (A GREATER STOMAL DEPTH CAN BE EXPECTED IN THE OBESE); AND THE VARYING GENERAL EDEMA SEEN IN MOST CRITICAL CARE PATIENTS.

- 1. Mallick, A., Bodenham, A., et. Al. An investigation into the length of standard tracheostomy tubes in critical care patients*, Volume: 63, Issue: 3, Pages: 302-306, First published: 15 February 2008, DOI: (10.1111/j.1365-2044.2007.05327.x)
- 2. Szeto, C. Kost, K. et al. A simple Method to predict pretracheal tissue thickness to prevent accidental decannulation in the obese. Otolaryngology (2010) 143, 223-229. First published February 28, 2010.

